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1 Introduction

In aerospace applications, magnetic suspension systems may be required to operate over large variations

in air-gap. Thus the nonlinearities inherent in most typ_ of suspensions will have a significant effect.

Specifically, large variations in operating point may make it difficult to design a linear controller which

gives satisfactory stability a,d performance over a large range of operating points.

One way to address this problem is through the use of nonlinear compensation techniques such a._

fi-e(ll,ack linearization. In the last decade, this area has seen a great, deal of research ell,)rt among system

theorists [6], [7], [8], and h;_s been successfully used in flight control applications [9], bu! has yet to be

widely used in the area of magnetic suspensions.

No,dincar compensators haw; received limited attention in the magnetic suspension literature. In

[11] the control system design for suspension of a 1-ton, 4-passenger vehicle is presented. A flux sensor

is located on the pole-face of the suspension magnet. A minor feedback loop is closed on flux which

linearizes the dependence of magnetic force on position, q'he force goes ,_s the square of flux, so an

additional square root linearization is required. The idea of using an analog multiplier to compute the

ratio i/x is nmntioned, which would allow elimination of the Ilux sensor. Itowever, tl,is technique is

reported as prone to drift and noise, and was abandonded. This flux-feedback scheme is described in

more detail in [12]. In [13] a nonlinear correction law is used to correct the inverse square law magrret

behavior in a flywheel suspension. The nonlinear compensation is imphmlented with analog multiplier

and square root circuits. Microl)rocessor-ba.sed linear|zing transformations arc reported in [14] in _he

context of a demonstration system.

In recent years, progress has been made in the theory of nonlinear control systems, and in the s:tb-

area of feedback linearization. Ilere, [6] is of fundamental importance in that it presents the con(lit|tins

und,'r which a system may be lincarized. In [7] these results are globally extemled, and i, [8] the the.,ry

is d,weloi)v(l for mnlti-input/multi-outl)ut systenrs, in a subsequent section the results of [6] are applied

t(, a third order suspension exami)le, llowever, for a simple system, it is often possible to construct

the linearizing transformations by mspcctiou. Wc start then by demonstrating the idea of feedback

lim'arization using a _coml order suspension system. In the context of the second order SUSl)_'nsion ,

sanq)ling rate issues in the implementation of feedback linearization are examined through simulation.

The system which is studied is presented in the next section.

2 Nonlinear Suspension Model

In lhis section, the open-loop dynanlics for a silnple one-degree-of-freedom suspension :_re presented. ' his

system exhibits the essential issues faced in the design of tractive type suspensions, that is, SUSl)en_ ms

which operate as variable r,'luctance devices. TI,e example is drawn fron, [10] pgs. 22-23, 84-86, tnd

193-200. The only change is that the system is inverted such that gravi|y acts t(_ open the air-gap. t his

system is shown in Figure I.

The details of the electromagnetics are worked out in [10]; for the present purposes, the imporl mt

details are the coil voltage

2wdl_oN "2di 2wdpoN2i dx
!_ c -_-

go+x dt (go+x) 2 dl +jR (1)
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and the fi_rc,' on the plunger

A = -wdt_oN 2 _ + Mg- fe, (_: > 0) (2)

where the first term is the electromagnet force, the second term is the gravitational force on the phmger,

and the third term is a disturbance force acting on the plunger in the direction the electromagnet force.

The nonmagnetic sleew, is a_ssumed to exert ao frictional forces on the plunger.
If we deih,e

C = wdl_oN_

xl = x +go, (xl > go)

;_] = x2

then the stale equations fi_r the open-loop suspension are

•_1 ----- x2

- M +.q---

• ./_1 u
i - iz_ Rx]i +

x L 2(: 2C

/_ (a)
M

2.1 Second order system

If the coil cllrrellt is ,'L'_sIInle(I to be the control input, then the snspensiol| stal,, e(luali_ms are rmtuced
to secontl ,)rder.

Z' I : 'g2

M + g - _-1

'lhese equations will adequately model the system if the coil current is controlled by a high-bandwidth

current loop with sufficiently high voltage-drive capabilities. In applications, it is most typical to drive the

coil with such a current loop, as this essentially eliminates the dependence of position-loop performance

upon the electromagnet coil resistance and inductance.

3 Linearization of second-order suspension

The b_L, ic idea of f,,edt)ack linearization is to (leline transfor,natio,_s ou tim stat,,!s and input(s) such

that the nonlinear system al)l)ears linear and operal.iug-I)oi,lt invariant in terms of the transformed

repr,'sentation. Then a controller can be designed for the tra,lsformed wtriabh:s. This allows the closed-

loop system stability to be made independent of operating point.

For the second-order equations (4), a transformatiou on the input is all that is required to linearize

the system. This transformation may be derived by insl)e.ction without using any formal mathematical

,nachinery; this is the appr,,ach taken in [11], [12], [13], a,,d [14]. That is, if the coil current i is made to

wtry ;Ls

i = a'l (5)

then the suspension is gh)bally linearized in terms of the ,ew il,[)ut v. The notation for the auxiliary

inl,ul, t, ha.'_ been c]|ose.n f,,c_n|atch Ihe notation h| [(;].

Specifically, sul,stit|Jti|_g from (5) into (4), the syst.c|,_ st;tt.(, equations I)ec,,m,_

Xl = x2

I.
i2 = v + g M (6)



These equations are linear, with an input v, and disturbance terms g and fa.

tlere, v is a signal internal to the compensator which may be thought of as a setpoint for acceleration

in the direction of increasing airgap. In operation, the signal v will be computed within the compensator,
and constrained to be less than or equal to zero. Since tile magnet can only supply accelerations in the

direction of decreasing air gap it would not be physically meaningful to ask for acceleration in the

direction of increasing air gap by setting v greater than zero. Thus the term -v in (5) will always be

greater than or equal to zero, and the square root will yield a real number.

The plant appears linear in terms of the new input v. This compensation of the nonlinear term does

not however stabilize the plant. To stabilize the system, the nonlinear compensator is preceded by a

linear compensator. The resulting closed-loop system is shown in Figure 2. The compensator may be

thought of as having two parts, a nonlinear compensation section and a linear compensation section. It is

the function of the nonlinear section to implement (5) in order to adjust i as a function of xL and v, such

that the acceleration of the plunger is equal to v. It is the function of the linear section to specify the
value of v as a function of the error between the position setpoint and the measured position such that

the linearized plant is robustly stabilized and has good disturbance rejection and settling time properties.
The signal v forms the connection between the linear and nonlinear sections of the compensator.

This combination of linear and nonlinear compensation sections stabilizes the plant such that the loop

dynamics are independent of operating point. Such operating point independence is the main advantage
of using a nonlinear compensator. Note that as viewed from the input to the nonlinear section, the

incremental relationship between v and xl is equal to 1/s 2, independent of operating point. Thus, the
linear compensator can be designed to control a double integrator via standard linear techniques. If it is

desirable to reject static disturbance forces with no position error, then the linear compensator can be

designed to include an integral term. This integral term will adjust the value of v to balance gravity and
any low-frequency components of the disturbance fa.

In applications where large excursions or disturbance forces are anticipated, the additional complexity

of the nonlinear compensation approach is justified. The major caveat is that we are assuming that the

suspension model is accurate. For the electromagneties an accurate model can readily be developed, and
thus nonlinear compensation techniques are applicable. The nonlinear compensation technique was used

in the construction of a class demonstration system which is described below.

4 Classroom demonstration implementing linearization

In the Spring of 1988, the author constructed a single degree of freedom levitation system for use as

a classroom demonstration which implemented the noqlinear compensation technique described in the

previous section. As developed there, if the plant state equations are given by (4), then applying the

nonlinear compensation law (5) results in a system which appears to be linear in terms of the intermediate
signal v. The demonstration system uses a high-I)andwidth current-drive to regulate the electromagnet

current, and thus (4) is applicable.

In the demonstration system, a one inch steel ball bearing is suspended below an electromagnet

consisting of 3100 turns of #22 magnet wire wound on an 1 inch diameter by 4 inch length steel core.

The coil current is controlled by a Bose-type switching regulator, with a half-scale current switching
frequency of 10 kHz, and a full scale current of 2 Amperes. The operating point current is about 0.4

Amperes at a typical operating point air gap of 1 era. The system is digitally controlled by an 8088/8087-
based single-board computer and data acquisition system at a 400 llz sampling rate. The control law

for the nonlinear compensation section uses (5) to linearize the inagnetic force relationship. This allows

the stability of the closed-loop system to be essentially indel)eudent of the operating point. The control

law for the linear compensation section is then developed via classical techniques applied in the discrete-

time domain. The position of the bali is sensed optically, and nonlinearities in the sensor output versus

position are compensated for in software.

In order to apply the nonlinear compensation technique, an accurate model of the plant is required.

For the classroom demonstration, this model is developed by measuring the force on the ball as a function

of current and position. This measurement is accomplished by using a balance beam for measuring the

magnetic force on the ball. A 1 inch ball bearing is gh,ed into one end of an aluminum balance beam

of rectangular tubular cross-section measuring 1 inch wide by 0.75 inches deep by 12 inches long. The
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beam pivots at the center on a thin wire which is held by fixed side supports. Balance pans axe hung

from the beam on both sides of the pivot midway between the pivot and the ends of the beam. These

pans are used to add or subtract weight carried by the suspension. At the end of the beana opposite the

ball, a micrometer is positioned to push against the beam and thus provide a position reference.

The idea here is that the ball glued into the end of the beam can be placed into suspension and the

beam thus provides a handle by which the force applied to tile ball can be varied. This is accomplished

by putting weights into the balance pans on either side of tile pivot. The beam is made of aluminum, and

thus does not interact with the electromagnet at low frequencies. At the ball end, the beam is made thin

so as not to interfere with the optical measurement. The bali is attached to the bottom of the thinned

end of the beam such that it interacts with the optical sensor in the same fashion as a freely suspended
ball.

The force relationship (2) was well fit by the experinaental data with the parameters C = 4.43 x

10 -4 Nm_/A 2 and go = 0.25cm. The mass of the ball is 67 grams. These parameters are used in the

nonlinear compensation law (5). The only deviation from the relationship (2) is at high currents (> 1A),

where tile effects of magnetic saturation are apparent.

The optical position sensor is constructed as follows. A 24 volt, 5 watt incandescent lamp is used as

the source, and a piece of cadmium sulfide photo-cell is used as the sensor, in what is a standard position

sensor for magnetic suspensions. Using the balance beam described above, the sensor output is measured

for a number of ball positions. When the shadow-line cast on the sensor is in the central region of the

sensor, the sensor output is essentially linear with ball position. Itowever, as the shadow-line approaches

the upper or lower edge of the photo-cell, tim sensor sensitivity begins to decrease. This nonlinearity in

the relation between ball position and sensor output is corrected in software in the section of code which

inputs the sensor voltage. The corrected position measurement is then linear with actual ball position.

It is this corrected position measurement which is passed to the rest of the control loop.

Tile position sensor was found to have several defects which limit the system performance. First,

the incandescent bulb output decreases significantly as a fimction of time. This is believed to be due

to the evaporation of the filament. Material driven off of the filament is deposited on the inside of the

glass envelope, thereby decreasing the bulb brightness. The second problem is that the cadmium sulfide

seusor is sensitive to any light falling on its surface, independent of the source. Thus ambient lighting is

indistinguishable from the light emitted by the bulb.

Both of these effects cause problems in the nonlineax compensation law (5) and in the correction

of the sensor nonlinearities. First, the decrease in bulb intensity and any changes in average ambient

light act. as offset terms which drive the system to incorrect points on the sensor correction curve and

in the magnet nonlinearity correction law (5). This offset deteriorates the system stability. Secondly,

the ambient ligi_t has a large component at twice the power line frequency, especirxlly in rooms with

fluorescent lighting. This signal at 120 Hz acts as a large noise source which causes error motions in the

ball position.

The above problems can be solved as follows. First, the light source needs to be made more constanl

with time. This can be achieved by using a more specialized incandescent bulb, or by switching to a

semiconductor light source such as an infra-red light emitting diode. The ambient lighting offset and

noise problems can be solved by either or both of two approaches which are classical. The first is to make

the system narrow-band. Commonly available IR diodes emit a relatively narrow-band optical signal;

laser diodes are narrower. ]n this case, an optical band-pa.ss filter can be placed in front of the sensor, so

that only the emitted frequencies are sensed, and the ambient lighting is greatly attenuated. The second

approach is to switch the light-source on and off at a high frequency and use synchronous detection to

reject signals which are not at the same frequency and ph_.uc as the source. The frequency of switching

must be made much higher than the cross-over frequency of the position control loop, perhaps on the

order of 10 kHz switching frequency. This rate is easily within the capabilities of available electronics.

The results derived in the previous section for the nonlinear compensation laws assume that these are

implemented in continuous time. For discrete-time implementation, the issue of sampling rate becomes

important. This issue is investigated in the next section.
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4.1 Sampling rate issues

Due to the complexity of the transformations it is most likely that a linearizing compensator will be

implemented in discrete time. As all introduction to one issue involved in discrete-time implementation,
the effect of sampling rate on the second-order suspension system (4) is investigated by simulation. For
this example, the suspension parameters have been been given the values developed for the class demon-

stration system described above. These values are M = 67 grams, and C = 4.43 x 10 -4 Nm2/Amp 2.

The system is simulated assuming a nonlinear compensation law of the form (5). The four graphs

shown in Figure 3 indicate the system behavior when a net 0.05g acceleration (v = -0.05 in (5)) is
specified. The lines labelled 'ideal' show that if the nonlinear compensation was perfectly implemented,
the force on the ball would be constant, and the graph of velocity vs. time would be a straight line.

Ilowever, with any finite sampling rate this is not the case. The system is open-loop unstable, and
uncontrolled between sampling instants. Thus it 'runs away' during the interval in which the control

current is held constant. The graphs show the result of this process for sampling rates of 1 kHz and 200

tlz. To get reasonable behavior, it can be seen that a sampling rate on the order of 1 kHz is required.
In the class demo, due to computational speed limitations a 400 Hz sampling rate is used. This is found
to be adequate as long as the ball is not allowed to approach too close to the pole face.

Another way to look at the effect of sampling rate is to examine the system behavior under closed-loop
position control. To this end, a linear proportional plus lead compensator is designed in discrete-time to
stabilize the nominal plant which would result if the ,lonlinear compensation were perfect. That is, in the

ideal case, the nonlinear compensated system appears as a double integrator independent of operating
point. In the finite sampling time implementation, the quality of this approximation deteriorates as the

air gap closes. This can be seen ill Figure 4 which displays simulated step responses for the closed-loop
system at four nonfinal operting points and for tile two sampling rates. Note that the system with 200 Hz
sampling goes unstable at the 0.5 cm and smaller air gaps, whereas the behavior of the 1000 Itz sampled

system only begins to deteriorate when the air gap approachs 0.3 cm. The unstable response for 200 llz
sampling is not shown for the 0.3 cm air gap.

This example shows that the practical implementatiou of linearizing transformations may require
very high sampling rates. Also, what may be considered a satisfactory sampling rate depends on the

range of operating points which are encountered in system operation. Certainly, tile issue of discrete-time
implementation merits further study.

Experience with this simple nonlinear compensation system provided the impetus toward an under-

standing of feedback linearization techniques in more generality. A description of the application of
feedback linearization to the third order suspension system is given in the next section.

4.2 Linearization of third-order suspension

For more complex plants it may be difficult to develop linearizing transformations by inspection. The

results of [6] provide a general approach to this problem. A good introduction to these ideas is prese_ted
in [4] and [5]. These references assume no more thau an undergraduate background in control theory
and are thus a good place to start for someone new to this area.

Without reviewing the results from the above references, if the plant satisfies a controllability con-
dition and a condition on the existence of solutions to a set of partial differential equations, then trans-

formations zl = Tl(X),...,z n = "rn(Z),v = Tn+i(x,u) can be constructed such that ill the z-v space
t ho system appears linear, llere, x is the state-vector of the nonlinear system, z is the state-vector of

the tinearized system, and n is the system order. Uuder th(_se transformations, th_ no_din('ar system is
mapp_d to the controllability canonical form

d

dt Zll(Z2)lZn -- | Zn

Zn 0

0

0
I

(7)

For the system (3), the required conditions are satisfied, and the results of [6] yield the linearizing

transformations zj = xl, z2 = x2, z3 = -(C/M)(i/xt) _, and z4 = _(Ri - u). Thus the system
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appears linear in terms of state varibles zl, z2, and z3, and with a properly redefined input v. The

states zl and z_ are simply the original position and velocity. State za is the acceleration applied to

the suspended member. Thus it makes physical sense that the suspension will appear linear in za. The

suspension force happens to vary nonlinearly with the untransformed state and input, but Newton's law
guarantees linearity in terms of a transformed state varible which is proportional to acceleration. In an

implementation, the voltage drive u must be computed in terms of v:

Mxlv
u = -----i'-- + iR. (8)

Since v drives the derivative of zs, we can think of v as being a setpoint for the slope of the acceleration.

Note that the coil resistance voltage drop iR is directly added to the input u.
Thus we have found a set of linearizing transformations, llowever the transformations are not unique.

Direct substitution will verify that tire transformations T1 = x 2, 7"2 = 2xtx2,

and

2Ci 2

T3 = 2_ M_ (9)

6Cx2i 2 2i

7"4= Mx_ + --_(Ri - u) (10)

though more complex than the first set, do indeed globally liuearize lhe system. Actually, there are

aa_ infinity of such transformations which linearize this system. This is a consequence of the natu_ : of

nonlinear systems. It is clear however that the first set has the greatest physical meaning, and _bus
would be chosen in any practical context. Note also that in the first set the transformed state z3 need
never be computed. This is so because the system is linear between the transformed input v and the

original position state variable xl. Further, note that the input transformation (8) depends only upon
position xl and current i. Both of these quantities may be readily measured.

5 Conclusions

As we have seen in the magnetic suspension examples, the technique of feedback linearization i_ of

great utility in designing control loops for nonlinear systems such that the closed-loop systems are well-
behaved despite large variations in operating point or disturbance forces. Sampling rates for discrete- ime

implementations have been shown to be critical, especially at small air gaps. For practical applicat,ms,
the most important area which we have overlooked is that of robustness with respect to plant modeling

errors. This is an area which has also been a topic of current research [5]. In [3] it is noted that the
electromagnet nonlinearity results in nonlinear cross-coupling terms in the control of five degrees of

freedom of a precision linear bearing suspension. Thus it will be advantageous to implement nonli _ear
compensation laws for this and other multivariable suspension systems.
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